4 MAGNETIC SUSCEPTIBILITY OF ALKALI METALS

the recent data of Collings, the paramagnetic sus-
ceptibilities for Li and Na can be much less than
those used by Silverstein for comparison. Since all
theoretical results depend on effective mass a pre-
cise comparison of theoretical results is difficult.
However, in Fig. 1, we have compared our result
on the paramagnetic susceptibility with Silver-
stein’s.

In our numerical results we have chosen g=2,
but our theoretical formulas were derived for arbi-
trary g. In the past several years, accurate mea-
surements of the electron g value have been made
by conduction electron-spin resonance.'! For alkali
metals it has been found that g value is very nearly
that of the free electron. The largest difference of
1.07x 102 has been found for He while in Li the dif-
ference is (- 2+2)x10°¢,

The diamagnetic susceptibility reported by Kan-
azawa and Matsudaira needs two corrections.

First, in their notation the correct ratio of the sus-
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ceptibility to that of an ideal electron gas is

X . 1+ 27 (lm’s+4+lng>,
Xo 6m T
The extra term In} appearing in the bracket in their
result is due to the effect of spin missing in their
expression for the screening constant. Second,
their numerical value 1.12 is correctly 0.86. This
value is then not close to that which March and Don-
ovan obtained, i.e., 1.51.

Figure 2 illustrates our results on the diamagnet-
ic susceptibility in comparison with that of free-
electron gas and also March and Donovan. The
theoretical susceptibility curves for an interaction-
electron gas cross with that of free electrons at
7s=2.75 and the deviation becomes larger for larger
7¢ as expected. Our result (2.12) improves what
Kanzawa and Matsudaira reported. It gives terms
to the second order in 7.

*Work supported by the NSF through Grant No. GP-
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A theory is developed for the exchange core-polarization (ECP) contribution to spin density
S in liquid metals in the framework of moment-perturbation (MP) procedure and pseudopo-
tentials. The zero-order contribution to S°® has been shown to be temperature independent
while the first-order term depends on the temperature through the liquid-interference func-
tion. The results give a definite trend for convergence of the perturbation theory. In the
specific case of liquid Mg the ECP contribution to the Knight shift K@ is about 25% of the direct
shift K‘ and varies rather slowly with temperature in comparison to that of K“ From the
present results it seems that the Fermi-contact term is the most dominant term and deter-
mines the major change of the Knight shift with temperature in agreement with what has been

predicted previously.

I. INTRODUCTION

Recently Rossini and Knight! have investigated a

number of liquid metals to understand the various
contributions to the Knight shift K; and nuclear-spin
relaxation rate, but in the absence of any theory
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they used some approximate results to represent
the core-polarization contribution K°? in their work.
It is the purpose of this paper to show, by expound-
ing the concept of pseudopotential and liquid-inter -
ference function, the relative and quantitative im-
portance of both the magnitude and temperature de-
pendence of K in liquid metals.

The first and the most important contribution to
the Knight shift usually comes from the Fermi-
contact interaction K% To calculate K¢ one evalu-
ates the probability density of the conduction elec-
trons directly at the nucleus. However, the conduc-
tion electrons with /=0 symmetry can only contrib-
ute to this mechanism. Thus, for a metal (as, for
example, Be) where the conduction electrons are
more like p electrons, the Fermi-contact term
gives a vanishingly small contribution® to K ¢ and
“other” contributions to K, may be of comparable
importance.

The second important mechanism that contributes
to K, is the exchange interaction between the con-
duction and spin-polarized core electrons. This
is usually known as the exchange core-polarization
(ECP) contribution K, and has been calculated in
the solid state by both the exchange-perturbation®
(EP) and moment-perturbation* (MP) methods, the
latter being more flexible in its applications. For
the solid alkali metals the ECP contribution to K
is about 25% of K%, while for Mg it is as much as
40% of K. In solid Be the ECP mechanism has
played a very decisive role in canceling out a large
portion of the positive direct contribution. ? Besides
its absolute magnitude, the temperature dependence
of the ECP contribution to K is very interesting
because the conduction electrons with angular mo-
menta 7=0, 1, 2 can contribute to K, With the
rise of temperature the s character of the conduc-
tion electron is expected to increase with a simul-
taneous decrease in the p, d angular components. *
Thus, K¢ is expected to rise with temperature.
However, it is difficult to assess a priori the tem-
perature dependence of K<, since the signs of the
contributions to K from various angular momenta
cannot be determined without an explicit calcula-
tion.

Thirdly, there is the interaction between the
nucleus and the non-s conduction electrons, which
represents the orbital contribution K°. The theory
of the orbital contribution has been worked out for
Bloch electrons in the solid state. However, a
quantitative result of K ° for solids is rather diffi-
cult to obtain because of the complicated interband
transitions. In the liquid state one does not have
these discontinuities in the energy bands, and esti-
mations of K° indicate that, except for a very few
metals, K° can be regarded as small.! '

Although the Knight shift in liquid metals has been
measured quite satisfactorily both as a function of
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temperature and pressure, -8 a quantitative analysis
of the various contributions to Knight shift in the
liquid state has not yet been done. However, it has
been concluded from those studies that the Fermi-
contact interaction K is the most dominant contri-
bution to the total Knight shift K,. Most recently
some good experiments®'®'1° have also been made

to study the temperature dependence of spin-relaxa-
tion rates, and attempts have been made to find a
correlation between the Knight shift and spin-relax-
ation rate via the electron-electron interaction and
exchange-enhancement phenomena. On the theo-
retical side, expressions have been worked out by
several authors!!~! for the Fermi-contact inter-
action, and the temperature dependence of K‘s' has
been investigated. But for metals where K is
substantial (in particular, where its different com-
ponent contributions have opposite signs) the tem-
perature dependence of K°® can importantly influence
the temperature dependence of K,. Such a calcula-
tion would require a knowledge of the temperature-
dependent interference functions whichare not readi-
ly available for the solid state. However, for the
liquid state one can extract the information from

the study of the liquid-interference functions avail-
able from elastic-scattering experiments. In view
of this simplicity we have studied the temperature
dependence of K°? in liquid metals.

In Sec. II we will develop a theory for the ECP
contribution to the spin density S°® in the framework
of pseudopotential formulation. In Sec. III this the-
ory will be applied to the specific case of liquid Mg,
and the effect of S® on K, and spin-lattice relaxation
time 7,7 will be discussed. In Sec. IV we will
summarize and relate these results to the earlier
solid-state calculations.

II. THEORY FOR ECP CONTRIBUTION

The ECP contribution to Knight shift K can be
written as

K®= %7y, Vs, (2.1)

where x, is the Pauli spin susceptibility and V is
the volume of the entire liquid under consideration.
The ECP contribution to spin density S® is ex-
pressed, as in the solid state, #* by the equation

5= ((1/N)20;| ¥ (R)| ) . (2.2

In Eq. (2.2), R, defines the position vector of the
ith dynamic nucleus, N is the number of nuclei in
the liquid, and k is the magnitude of the Fermi mo-
mentum. The above average sign implies an “en-
semble” average. The Fermi-surface averaging
is not necessary here since the Fermi surface in
the liquid state is assumed to be spherical.

The calculation of S°° in Eq. (2. 2) will be carried
out in the spirit of MP procedure. Much has al-
ready been said about the MP procedure and we re-
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fer, in this regard, to earlier works.®* As in the
solid state, we write the spin density due to ECP
mechanism at a single nuclear site as

|‘l‘k( ﬁ‘)l 2= 2Re <§ <5¢nsl HEl(pns>

- Z; <6¢ns|¢n's>(¢n's|HE l(pn.s))' (2-3)
n’ s?ns

The summation in Eq. (2. 3) runs over all the cores
of the metal. ¢, is the atomic core function of the
“ns” state and 6¢,, is the corresponding MP core
function. The second term in Eq. (2. 3) arises be-
cause of nonorthogonality between 8¢,  and ¢, .
This contribution has been found to be about 5-6%
of the first term® in Eq. (2.3) and can be neglected.
Thus,

| (R, | 2= 2R (6@ 5| Hz |0 ) - (2.4)

ns

The exchange Hamiltonian Hz which measures the
difference in the exchange potential for the spin-up
and spin-down core electrons can be written as

Hyos(T)) = = 0, (Ty) [ CE(F)(e2/71)0 (T d%r .
In terms of atomic units (%=1, ¢?=2, and m =3) the
above equation reads

HE‘Pn.s( i'.1) == ‘l’k( i"1) f ‘1’:( i"a)(2/1’1z)‘.!’ns( I.tz) ds"‘a .
(2.5)

The conduction-electron wave function ¥, is usually
obtained in the solid state by variational proce-
dures. Since the momentum states ¢ in liquid met-
als are continuous, one cannot use the variational
procedure. Instead, one resorts to the use of per-
turbation formalism in the framework of pseudopo-
tential. In recent calculations'*?® of K¢ in liquid
metals, it has been shown that the second-order
contribution to spin density is small, and that per-
turbation theory in fact converges. Therefore, for
our present calculation we express the conduction-
electron wave function up to the first order in the
perturbation, i.e., the pseudopotential

V=00 w ) (2.6)

The zero-order function ¥;* is formed by making
the plane wave (the basis function in the pseudopo-
tential scheme) orthogonal to the core states. Thus
¥i? is a single orthogonalized plane wave (oPW),

GO =1V Ve T b (KK, T, (2.7)
where the orthogonalization parameter is
b(K)=(1/V V(D) | F) . (2.8)

Expressing e i terms of spherical harmonics,
it can be shown that
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\1,,(20)_ 7 7‘ )Y, (F)Y 5 (KR, (kr) (2.9)
with

R,(kr) ='Vj1 (k'}’) _Z:n Tnl(k)Unl(r) . (,2' 1'0)

In Eq. (2.10), T, (%) is the Bessel transform of the
radial atomic core functions,

To()= [ U )y () var (2.11)

The first-order function ¥{!’ can be formed by
orthogonalizing the first-order perturbed plane-
wave function

@;1)( ) kz;l(k IWlk) 1 lk'-‘x" (2.12)

D

to the atomic core states in the same manner as
Eq. (2.7). Therefore,
v (F)=3 (k' ””‘e’lk)
kl
47T Ry - x (i1 ' 1
x| 7 2 @YK IR 6" | . (2.13)
l,m (s
In Egs. (2.12) and (2.13),
tial
W(;)=2vw(];_ﬁvl) 3

W(r) is the pseudopoten-

(2.14)

where w(Ir - R, |) is the potential of the R,th ion
and is assumed to be local. The Fourier transform
of the pseudopotential W(r) can now be expressed
as

(k| W[k =(1/MD, e FF Ry ([K-K')),
(2.15)

with

w(|k-K'|)=1/Q) [ 'FE"F i) a%y ,  (2.16)
, being the volume per ion. Using Eq. (2.15) in
Eq. (2.13) and replacing the summation over &’ by
integration, the first-order wave function can be
simplified to
¥ O(F) = i"'_g_ f

(|k - ‘) i(k-i')-ﬁ,,

[4"2 W% OVEDR ]

(2.17)

where ® means the principal part. Using Eq. (2.6),
the contributions from Eq. (2.5) can be separated
into zero- and first-order terms in the following
way.
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A. Zero Order

The zero-order part of Eq. (2.5) can be seen to
have the form
Hy@ig(T 1) = =BT [ WO (T)(2/7190 (T d%, .
£y .-
(2.18)
Expressing 1/7,, in terms of spherical harmonics,

4"2 21 17 ‘WE YTV (T, (2.19)

7’2

and using Eqgs. (2.2), (2.4), (2.9), and (2.18), the
zero-order contribution to S® can be calculated as

(Scp)(O):_ZReZ[_s—ﬂ-Ef v1dry 8U ,(ry)
ns 4 1J

X Ry(ky 71) f1, ns (k,rl)]

8 0
_ —%E/ a; n(k, rl)drl] .
1 o

In Eq. (2.20), 8U,(r) is the radial part of the MP
core functions 5¢,,(7), and the exchange integral
Si1,ns(k, 71) is given by

=2Re2[ (2.20)

ns

k 7’2) U"S(Vz) 7’2*1 dra

fl,ns(k 7’1) _ﬁTf

* 1
+7i[ Rz(k, 'Vz)U,.,(fa)g dry,. (2.21)
2!

As can be seen, the zero-order contribution to S°°
is simply the one-OPW result and is temperature
independent.

B. First Order
The first-order part of Eq. (2.5) has the form

- - - 2 -
H30 7)== ¥ [ G o v

+UD(F )f\Ilm)* r )—2-<p,,s(;z)d3'rz] .
712
(2.22)

From an inspection of the form of ¥{" and ¥ * it
is evident that the above two terms of first-order
contribution are different from each other. There-
fore, we write the first-order contribution to S,
(") as a sum of two terms:

(8D = (§°) V(1) + (S®) (1) (2.23)

With the use of Egs. (2.2), (2.9), (2.17), (2.19),
“and (2. 22), it can be shown that

(s®) (1) = 2ReZ)[ (i;, E‘Pf k2’ G;kﬂ’_z(k, k')]

| >

X @ )af w(|k-k' D1k -k'|) P,(x) ax

(2.24)
and

(S®)M (1) = 2ReZ)[ 7 (7?7")—2

X3 @ [ TkdR'Gy (R k)]
1 o k —k

1

xf w(E =N I(E =R )Py)ax . (2.25)

In Egs. (2.24) and (2, 25), « is the cosine of the
angle between k and k' and I(q) is the liquid-inter-
ference function

I(g)= %Ee“ ‘ﬁ*-ﬁv’> ) (2. 26)
i,v

Information regarding I(g) can be obtained experi-
mentally from x-ray or neutron-diffraction studies,
or theoretically by assuming the liquid metal to be
a classical fluid of hard spheres. The quantity

Gy, ns(k’, R) is given by

Gl,ns(k,’ k)= fowﬁdrléUns(”l)fz,ns(kl» rOR, (&, 7,) .
(2.27)

However, Gy, ,(k,k")is similar to Eq. (2. 27) except
that £’ and % have to be interchanged. It is only
through the term G, ,, that (5°®)*(1) and (S°®)‘®(11)
differ from one another. It is interesting to note
that (S°®)® is dependent on the structure of the liq-
uid, and the temperature dependence is carried
through the interference function I(g).

As is well known, the direct contribution to
Knight shift is explicitly described by

Ki=%nx Vs, (2. 28)

where S is the Fermi-contact contribution to spin
density. Therefore, combining the direct and ECP
contribution, the quantity K is given by

K =%mxVS, (2.29)
with
S=5%+8%, (2.30)

From a knowledge of S* and S, the relaxation rate
can be calculated from the expression'®

1/TiT= 21 y2yikpg¥(EQ)V?S , (2.31)

where 7, and v, are the electron and nuclear gyro-
magnetic ratios, and kg is the usual Boltzmann
constant. g(Ejy) is the band density of states per
electron spin; for the liquid metals (assuming
m*/m =1) it can be taken as the free-electron den-
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TABLE I. ECP contributions to spin density (in units of 1/N Q) in liquid Mg from various atomic cores at 651 °C.

Order of 1s core 2score Total=1s +2s core
perturbation s b s P s b
Zero order 6.841 - 2,693 15.949 3.224 22.790 0.)531
First order -0.669 - 0.089 -1.524 0.084 -2.193 -0.005
Total 6.172 —2.782 14.425 3.308 20.597 0.526

sity of states at the Fermi surface. Including the

ECP effect, G is obtained as
G=(S"+SP)%+3(S")% +5(SP) 2+« -+, (2.32)

which is valid for the one-OPW approximation. For
metals with §3°~ 0, G can be conveniently expressed
as

G=(8*+5%)2, (2.33)

III. RESULTS AND DISCUSSIONS

Since we are mainly interested here in the tem-
perature dependence of K°°, we should look for a
system where K® is substantial and its temperature
variation distinct. In searching for such a system
to apply the theory developed in Sec. II, we con-
sidered Mg to be an appropriate example for two
strong reasons. Firstly, its direct contribution K‘:
has been calculated both in solid® and liquid!* states
in great deatil. Secondly, and more importantly,
it has a large K contribution (about 46% of the K¢%)
in the solid state. We believe that a study of this
metal will give us an indication as to the importance
of K in liquid Mg and the behavior of K with tem-
perature in liquid metals in general.

In our calculations we have used the MP core
states 8U,, obtained earlier for the solid-state cal-
culation. 2 It bas been argued® in general and shown
for the specific case of Li that the MP functions, to
a very good approximation, are independent of the
environment they are in, This justifies our use of
8U,sfrom the earlier solid-state calculationin liquid
Mg. For the atomic core functions U, we have used
the wave functions tabulated by Clementi. '

For the temperature -dependent study of S we

need two additional pieces of information: the inter-
ference function I(g) and the ionic potential »(g).
For v(g) we have used the model-potential form
factors of Animalu and Heine.'® Unfortunately, no
experimental measurement of the temperature -
dependent I(g) is available at present for liquid Mg.
In view of this we have used the hard-sphere!® I(q)
with temperature effects incorporated through a
Debye-Waller -like approximation. ® In Table I we
have listed for the melting temperature (i.e.,
651 °C) the ECP contributions to spin density from
1s and 2s cores separately. The following obser-
vations can be made from the results in Table I.

First, the contributions to S from the 2s core

is about twice as large as that of the 1s core. This
is because the contribution from the individual cores
depends both on their density at the nucleus and the
strength of the exchange interaction. While the 1s
core has a larger density at the nucleus than the 2s,
the exchange interaction for the 2s core is stronger
than the other. This can be clearly seen from Fig.
1, where we have plotted the exchange integrals
[see Eq. (2.21)] involving the conduction electrons
with =0 for the 1s and 2s cores. The magnitude
of the height of the exchange integral at » - 0 cor-
responding to the 1s core is slightly greater than
that of the 2s core. On the other hand, the range
of the integral for the 1s core is about five times
smaller than that of the 2s core. The effect of
these integrals on S® can be seen from Fig. 2,
where the integrands of the zero-order contributions
to S® with 7=0 [see Eq. (2.20)] for the 1s and 2s
cores have been plotted. The oscillations in these
integrands are partly due to the nodes in the atomic
and MP core functions. It thus appears that in this
case the exchange interaction plays the dominating

08 | T T T T T T

-04

-08— \ / —

Integrand of zero-order s Qgns (kyr)

-36— -

-40F -

r (in units of Q)

FIG. 1. Exchange integrals [Eq. (2.21)] of the s(I=0)
conduction electrons for the 1s and 2s cores of Mg.
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fyns (r,) (in units of Qgr2)
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r, (in units of Gy)

FIG. 2. Integrands o; ,(k, #) [Eq. (2.20)] of the zero-
order contribution of S® in Mg. The integrands for the
1s and 2s cores are shown separately.

role.

Secondly, the contributions to S from the [ =0
part of the conduction electron (Si°) are positive and
of larger magnitude than the corresponding contri-
butions from the I =1 part of the conduction electron
(Sg®). This trend justifies the neglect of contribu-
tions to S from the higher angular momenta (I >2).
The contributions to S°° from S;°, on the other hand,
are negative for the 1s core and positive for the 2s
core. Since these contributions are of comparable
magnitude, the actual contribution to S;” is even
smaller due to the cancellation effect.

Thirdly, the first-order contribution to S is
found to be negative. This results in a reduction
of the zero-order contribution to S, which is not
unexpected, since by including an additional plane
wave one usually decreases the s content of the
conduction-electron wave function with a simultan-
ious increase in the p content.

Finally, and more importantly, we notice that the
first-order contribution is an order of magnitude
smaller than the corresponding zero-order result.
Furthermore, the signs of these two contributions
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are opposite to each other. This indicates that the
spin density S® is reduced by including an additional
plane wave. This trend was also noticed in the cal-
culation of K for many liquid metals. #'?* From
these results it can be concluded that perturbation
theory converges, lending a strong support to the
validity of the present approach in computing the
hyperfine properties of liquid metals.

In Table II various contributions to S from both
the orders are given for five temperatures. The
behavior of S® for various ! and perturbation orders
is found to be similar for all temperatures. As
mentioned earlier, the zero-order contribution to
S? is temperature independent; we are concerned
only with the temperature dependence of the first-
order contribution to S®*. It can be seen from col-
umns 5 and 6 of Table II that the magnitude of the s
contribution to (S®)**? decreases (by about 20%) with
a corresponding increase in the p contribution (by
about 300%). Since these contributions are very
small compared to the zero order, it is probably
more meaningful to analyze the total contributions
to S and Sp” given in columns 8 and 9 of Table II.
As the temperature rises, SJ° increases by about
4%, while S§® decreases by about 3% within the tem-
perature range of 350 °C. This indicates that the
system becomes more free-electron-like with the
rise of temperature. Since S3* and Sy’ are both pos-
itive and show opposite behavior relative to the tem-
perature, the quantity S in the last column of Table
II exhibits only a 3% temperature dependence.

In Table III we have compared the calculated ECP
contribution to Knight shift and nuclear spin-lattice
relaxation time with the corresponding direct con-
tributions. For the calculation of Knight shift we
have used (at all temperatures) the free-electron
exchange -enhanced susceptibility? x,=1.32x10®
cgs volume units, assuming the density-of -states
effective mass m*/m =1 for liquid Mg. Considering
the uncertainties involved in the use of this x,, we
have expressed the Knight shifts in Table III only
up to the second significant figure. We will now
comment on the temperature dependence of K rel-
ative to K 4,

From Table III it can be seen that when K3 in-
creases by about 25% with temperature, K¢ in-
creases by only 3%, whereas K;® practically re-

TABLE II. ECP contribution to spin density (in units of 1/N§) in liquid Mg at various temperatures.

First order, (S®)

Total, (SO +(s?)(h

Temp Zero order, (S¥)(0
(°c) s P Total s b Total s b Total
651 22.790 0.531 23.321 -2.193 -0.005 -2.198 20.597 0.526 21.123
700 22.790 0.531 23.321 -2.111 -0.007 -2.118 20.679 0.524 21.203
750 22.790 0.531 23.321 -1.952 -0.007 —1.959 20.838 0.524 21.362
850 22.790 0.531 23.321 -1.709 -0.010 —-1.719 21,081 0.521 21.602
1000 22.790 0.531 23.321 —1.532 -0.018 —1.550 21. 258 0.513 21.771
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TABLE III. Direct and ECP contributions to Knight shift and relaxation time in liquid Mg.

Temp K¢ K® K K% K, (1,70 (TyT)e*Ps
(°C) %) %) %) (%) %) (deg sec) (deg sec)
651 0.064 0.0228 0.0006 0.0234 0.087 171.3 93,1
700 0.067 0.0229 0.0006 0.0235 0.091 156.3 o 86.8
750 0.072 0.0230 0.0006 0.0236 0.096 135.3 7.7
850 0.078 0.0233 0.0006 0.0239 0.102 115.3 68.4

1000 0.082 0.0235 0.0006 0.0241 0.106 104.3 63.0

mains constant. Thus we may conclude that the
temperature dependence of K, is carried mostly
through the direct interaction and that the tempera-
ture dependence of K% is too small compared to K¢.
The total Knight shift, as shown in column 5 of Ta-
ble IMI, then shows about 15% rise in the temperature
range studied. Since the temperature dependence
of K, is mainly due to the temperature dependence
of I(g), it is important that we assess the limit of
uncertainty in I(g). As we have mentioned earlier
that there are no experimental I(g) available for
liquid Mg as functions of temperature, and that the
theoretical I(g) are derived from the hard-sphere
model with temperature effects incorporated in an
approximate way, it is possible that the magnitude
of error in K, may be about +0.005. Considering
this limit of uncertainty and assuming x, to be tem-
perature independent, the present K, in Table III
exhibits at least about 4% temperature dependence
within the temperature range studied. An experi-
mental measurement of K, will be very helpful in
deriving more definite conclusions about the tem-
perature dependence of K, and x;.

It is now appropriate to compare the liquid-state
result with that of the earlier solid-state calcula-
tions. 2 It is interesting to note that K% in the solid
was almost 46% of K%, whereas in the liquid it is
about 36% at the melting temperature. The reason
for this is that in the solid state the conduction
electrons in Mg had substantial p character, and
K® was almost comparable to K°® and of positive
sign. However, with the increase of temperature
it appears that the conduction electrons have be-
come more s-like. This is reflected by the sub-
stantial increase in K¢* and almost negligible K§* in

the liquid state.

The spin-lattice relaxation time at these tem-
peratures was calculated using the appropriate spin
densities. Column 7 shows the relaxation time 7,T,
obtained using the direct spin densities S?. Since
the p contribution to S® is very small compared to
the s contribution, we have listed in column 8 T,T
as obtained by using S*+S®. It is clear that the in-
clusion of the ECP effect considerably lowers the
relaxation time. As regards the temperature de-
pendence of T,T, we again allow for an error of
+10 degsec. This means that T,T decreases by
about 12% over the temperature range studied. Un-
fortunately there are no available experimental
measurements of 7,7, and it will be interesting to
see how these predictions agree with experimental
measurements in the future.

IV. CONCLUSIONS

A first-principles theory of the ECP contribution
to spin density has been developed for the liquid
metals in the framework of MP procedure. The
smallness of the first-order contribution to S® as-
sures the convergence of perturbation theory. The
temperature dependence of S® through the liquid-
interference function is rather small compared to
the temperature dependence of S®. The contribution
to the ECP effect to K, and 77 is appreciable and
cannot be neglected. More definitive conclusions
can be made if one can get some experimental in-
formation on K, and 7,7 in Mg. It will be worth-
while to apply this theory to other metals where S
is known to be substantial in the solid state and
where experimental information on both K, and 74T
is available.
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Electron-Phonon Umklapp Scattering Processes in the Low-Temperature Ultrasonic
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The theoretical treatment by Rice and Sham of the electron-phonon contribution to the atten-
uation of ultrasound in the local limit and the ideal (phonon-limited) electrical resistivity of po-
tassium is extended to include a careful evaluation of the role of umklapp scattering processes
at low temperatures. The results have been explicitly separated into normal and umklapp scat-
tering components and the rapid decrease of the umklapp components, and hence the total, at
very low temperatures, is emphasized for both the attenuation and resistivity. The results ob-
tained from a realistic phonon model are compared in one case with those from an isotropic
Debye-like model with a quadratic dispersion relationship and purely longitudinal and trans-

verse polarization vectors.

I. INTRODUCTION

Several recent developments in the study of the
ultrasonic attenuation due to electron-phonon inter-
actions and the ideal electrical resistivity at low
temperature have suggested a more thorough exam-
ination of the role played by electron-phonon normal
and umklapp scattering processes in potassium.

In a recent paper, Rice and Sham! calculated the
amplitude attenuation constant by the pseudopoten-
tial method for a longitudinal ultrasonic wave in po-
tassium in the local limit where the phonon-limited
electron mean free path is short compared with the
impressed ultrasound wavelength. They compared
their calculations (corrected to account for sample
dimensions as opposed to the infinite medium, and
for the polycrystalline nature of the samples) to the
experimental data taken by Natale and Rudnick® on
polycrystalline potassium samples at three ultra-
sonic frequencies in the temperature region
T~2-20°K. Rice and Sham found that the theoreti-
cal values underestimated the measured attenuation
constant by a factor approaching 2.

In recent years, measurements® of the electrical
resistivity of potassium at very low temperatures
have indicated that there are deviations from the
T® temperature dependence predicted by the Bloch-
Gruneisen formula which neglects electron-phonon
umklapp scattering processes. Similar effects have

been observed in sodium by Woods"; the interpreta-
tion in sodium, however, is somewhat obscured by
the martensitic phase transformation. Very re-
cently a quantitative comparison® of accurate resis-
tivity measurements with accurate theoretical cal-
culations (whose details are presented in this paper)
has shown that the complicated temperature depen-
dence in potassium at low temperatures can be
completely accounted for in terms of a “freezing
out” of umklapp processes.

Peierls® was the first to point out that for a metal
in which the Fermi surface does not touch the Bril-
louin-zone boundary there exists a minimum phonon
wave vector required for umklapp processes to be
possible. At a temperature below the energy cor-
responding to this minimum wave vector, the um-
klapp component of the resistivity will decrease
nearly exponentially owing to the effect of the Bose-
Einstein distribution function for the thermal pho-
nons. The relative importance of normal and um-
klapp processes has been estimated in the past. 7
In particular, Bailyn pointed out that owing to the
anisotropy in the sound velocities the effect sug-
gested by Peierls would occur at rather low tem-
peratures in potassium.

In this paper a thorough analysis of the relative
importance of electron-phonon normal and umklapp
scattering processes in determining the low-tem-
perature behavior of both the ultrasonic attenuation



